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The problem of convective diffusion to a reacting rigidsphere was solved earlier 
in [l] for smallvalues of P&let and Reynolds numbers and finite reaction 
,velocities, using the method of matched asymptotic expansions, In the pre- 

sent paper the problem of diffusion to a rigid sphere in a Stokes flow at finite 
velocities of the first order chemical reaction at the sphere surface is solved 
for large values of the P&let number. The method of solution is similar to 

that used in [2] in the problem of convective diffusion to a reacting flat plate 

in a longitudinal flow of a viscous fluid. 
We consider a convective diffusion of material to a rigid sphere in a Stokes flow 

of a viscous incompressible fluid the speed of which, away from the sphere is U . We 
assume that the P&let numbers P = au / D (where a is the radius of the sphere 

and D is the diffusion coefficient of the material in the flow ) are large. A first 

order chemical reaction with the velocity constant h takes place at the surface of 

the sphere. The process of convective diffusion at large.P&let numbers is described 
by the boundary layer diffusion equation which in the spherical . (r, 6) -coordinate 
system with the origin at the center of the sphere and the polar axis pointing in the 

direction opposite to the direction of flow at infinity, has the form 

yac + v, ac 
r ar r afj=DZ --- (1) 

Here v,. and vs are the radial and angular velocity components in the spherical 
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coordinate system. Equation (1) has the following boundary conditions : 
r +m, c = cg 

D&kc 
(2) 

r = a, 

r = a, 0 = 0, c = co 
where co is the reagent concentration at a distance from the sphere, The last con - 

dition of (2) represents an additional condition that the flow is not depleted at the 
stagnation point. 

The stream function in the diffusive boundary layer can be written for small 
y= r- a) in the form 

II, z-- z Uyasinf3 

( 1 
vg = - 4 1 w 

rsin-q’ *P=FcziijSin ) 
Let us introduce the variables 

In the (cp, %) variables the problem (1 ), (2) assumes the form 

(3) 

(4) 

ql = 0, % = 0, c = co 

where the function % (%) is obtained by inverting the transformation (3) for %. 

The solution of (4) is similar to the solution given in [2] of the problem of convective 
diffusion to a reacting flat plate in a longitudinal flow of a viscous fluid and is given in 
the appendix. From the second boundary condition in (4) and the appendix it follows 
that the diffusive flux to the surface of the sphere is given by the expression 

where 

8 

j (%, 0) = j (6, 0) = & \ exp (- yP/a) e-9-W 

0 

3”Sr (I/*) t”8 
r=2Dfo=e 

(l3 - l/s sin20)“’ 
sin 3 

(5) 

The expression ( 5 ) for the differential flux can be written in the form of a series in 

y which converges for any value of y [2] 

(7) 
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However, the above series converges extremely slowly even at Y & 1, therefore it is 

impractical to use (7) unless Y, is small. For large Y we follow C21 and make the 
substi~tion yt’f* = u to obtain the expression for the differential flux in the form 

i(f%O)=-+$& yexp [- (p>“]e-Udu 
0 

after which we expand the integrand into a series in powers of Y&A. This yields the 

expression for the differential flux in the form 

The results obtained indicate that near the leading critical point the chemical reaction 

is the rate limiting step of the process of mass exchange irrespective of the value of the 

reaction velocity constant, while near the trailing critical point it is the convective 
diffusion of the materi al to ttie surface of the sphere that determines the rate of the process, 

In the intermediate region we have a mixed mode, and.the expansions obtained above 

allow for this. The area of the surface of the sphere working in the diffusion mode in- 
creases with increasing reaction velocity constant. When k 3 oo (y 3 oo) the 

whole surface of the sphere enters the diffusion mode and the expression (9) becomes 

identical to that obtained in C2J for the limiting diffusive flux to a sphere. When 

k -+ 0 the whole surface of the sphere is in the kinetic mode and ‘i (8, 0) = kc,. 

Let us now determine the total flux 1 to the surface of the sphere. The mean 

Sherwood number Sh = I/ (4nal)cs) can be expressed, as follows from (5) and (8 1, 

by either of the following two integrals : 

Fig. 1 depicts the dependence of the Sherwood number on the parameter 87 obtained 
by numerical computation of the integrals (10) and (11). Iiere Shs I=: [311&h / 

(83: (V,))]P'I* is the Sherwood number for the limiting flux to the sphere which 

was calculated in C21 . 
At the high reaction velocities, i. e. at large values of the parameter e, the 

total flux can be represented in the form of a series in powers of e”A. To do this, we 

use the integral (11) expanding its exponent into a series in powers of a-%. 
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The resulting series appearing in the inner integral of (11) converges uniformly in 6 
and can be integrated with respect to @ term by term Performing term by term inte - 
gration in the outer integral of (11) as well, we obtain the series 

(12) 

It can easily be shown that the series (121 converges to the integral (11). We can also 
obtain the following estimates for the residue term Qx+l of the series J,, + 

J, $ . * * in the form 

1 QN+s I< e-%fN+ll ’ (~~~~) 

The problem thus reduces to calculating the integrals s,. The results obtained 
can be conveniently represented in the form of an expansion of the mean Sherwood 

number in terms of the parameter e-*b. Computing six integrals J, yields the 

following expansion : 

Sh==Sho(l- 1.135rr’l~ + 2.415~3 -- ($3) 

1.167e-‘/~ + 24.87e-8 - 205.4tr”~~ + 

Fig. 1 shows with a dashed line the dependence (13) of the Sherwood number on the par- 

ameter e for large values of the latter. We note that a certain lack of agreement 

between the results obtained by computing the series (13) and those obtained using the 

integrals (10) and (ll), is due to the slow convergence of (13) . When E is small, 
the integral (10) cannot be expanded in terms of Es Mathematically, this is connected 

with the presence of a singularity near the point 3t in the integrand of the inner inte- 

gral in (IO) . The singularity has the form exp (--eB / (zr, - 6)}(sc - @and it causes 
a nonuniform convergence of the series obtained by expanding the exponent. From the 
physical point of view this is connected with the fact that at small reaction velocities 

(small & ) a region in the neighborhood of the point 8 = 7~ still exists which is in 

the diffusion mode and in which y (0) can assume arbitrarily large values. It can 
easily be shown that in this case the region of small Y (an almost kinetic mode ) and 

of large Y (an almost diffusion mode f make contributions of the same order Q (E) 
towards the total flux, in contrast to the case of large e when the contribution of the 
kinetic region to the total flux is vanishingly small. 

We can estimate the region on the surface of the sphere corresponding to the tran- 
sition from the kinetic to the diffusion mode using the relation ‘l’ (6*) = 0 (1). The 
shaded region of angles 8” in Fig, 1 corresponds to the mixed kinetics, 1 denotes 
the kinetic region and 11 denotes the diffusion region. 

The results obtained above enable us to estimate the effective thickness of the 
diffusive boundary layer 6 = D (c, - c-a) / jPzcr for various values of 8. Using 
the expansions (7) and (9) and the second boundary condition of(Z), we can show that 
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& = l.O8P+ (e - I/% sin 29)‘1* I sin 8, E--too 
6 = 0.78P-+ (6 - Ya sin zep / sin 8, s + 0 

The first of the above formulas coincides with one obtained in [2] for the thickness of 

the diffusive boundary layer in the case of a limiting flux. We can see that in thecase 
of a kinetic mode the boundary layer is thinner than that in the diffusion mode. 

Numerical computations of the integrals (5) and (8 1 show that in the intermediate 

range of values of e the boundary layer thickness increases with increasing 8. 

Fig. I Fig. 2 

It will be interesting to compare the above results with those obtained in [ll for 
small P&let numbers. In Fig. 2 solid lines depict the dependence of the Sherwood 

number on the P&let number for small (in accordance with [I], this is a oarticular 
case of a Stokes flow) and large values of the latter for various values of the dimensionless 

reaction velocity constant k’ = ka / D = [2l? (2/J / (3”JT (l/J)1 PW. Curves1 
correspond to k’ = 0.1, 2-k’ = 1, 3 -kr - 10, 4 -k’ -00. Fig.2presents 

the possibility of interpolating for the intermediate values of the P&let number and 

for any chemical reaction velocities. Examples of interpolation are shown in Fig. 2 by 

dashed lines. 
Appendix. Below we give the solution of the problem (4 1. Substitution 

2 = 21, &:, c (2, 5) = z”* S (E, 4 

reduces the Eq. (4) to the form which allows the application of the Setton’s method 
which is analogous to the Goursat method of solving,the problems in the theory of 
heat conduction (see e. g. f2] 
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Equation ( Al) admits the solutions [?,I 

which are fundamental in the sense that any given boundary conditions can be satisfied 
by choosing a suitable contour L in the (h, p) -plane and constructing the function 

c (4, a) = s [A, (h, PI x1 + As&, P) x21 IP (L PI dh + Q (h PI ~PI 
L 

Here the functions AI, Ai, P, and Q must also be chosen in a prescribed manner 
with the boundary conditions taken into account. Following [2], we choose as the con- 
tour of integration the straight line p = 0 in the half-plane h > 0 and set 

di (h, 0) P (h, 0) = h”‘f. (h) 1 1 i= 1,2. 

The functions fl and fi are assumed continuous and bounded in the interval (0, 60). 
Then 

c (ET 2) = Cl (E, 2) + CC! (F, 2) 

m ii (h, h2jaZIIS 22 + A? 
ci = 

s 24 
exp C\ - - 

45 ) 
0 

i= 1, j==V& i = 2, j =: _-‘/, 

(A2) 

and the problem is reduced to choosing the functions f~ and fz. The system of 
boundary conditions written in the variables E and z , has the form 

Using the boundary conditions (A3) and the properties of the expansion (AZ) obtained 

in [3] (and quoted in [23 for the problem of convective diffusion to a flat plate), weobtain 

fa (A) =: co - fIl (A) 
(A4) 

&)05(QP~ fl(21fG)e-PdP 
k = 

‘R% s 
[C” - f I(2 I%)1 e--pp-*‘a dp (A51 

0 0 

Changing the variables 

EP = t, E = 11 u, fl (2 1/G== fi (t) 

we can reduce ( A5) to the form 

n(u)7 p(t)e-“tdr x [ [co-- p(t)je-uft-‘~*& ,,fu)= ‘~~~~~ ($),+js 

0 0 

Function p (t) can now be found from the equation 

r) (u) 0 (t) = [clJ - B WI ,-‘I 
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the initial condition for which can be written in the form p (0) = 0. Solving this 
equation, we obtain the following expression for the function fr (tl: 

Ir(r)=B (%,=&!Xp(-G)] 

and from this it follows that 
00 

lim c(<, z)=&\ exp 
z--f0 

1 - + (SP)‘l;i e-Pp-“Idp (A6) 
0 

The result (AG).obtained together with the first boundary condition of (A31,. enables us 
to determine the diffusive flux on the surface of the sphere which is equal, with act - 

ordance with the second boundary condition of (2), to li limz-+o c (5, z), and this 
leads to formula (5). 

The author thanks Iu. P. Gupalo and Iu. S. Riazantscv for unceasing interest and 
valuable discussions. 
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A three-dimensional nonstationary problem of spherical elastic wave diff - 
raction by a smooth solid wedge with arbitrary apex angle is considered. An 

exact solution in the form of a sum of two terms, the known acoustic sol- 

ution and an additional part describing the influence of elasticity, and caused 
by the appearance of additional longitudinal and transverse diffraction waves, 
is obtained by the method of integral transforms with extraction of the sing - 

ularities in the neighborhood of an edge. This latter term essentially distin- 

guishes the elastic from the acoustic solution. The particular case of an 

incident wave with a jump in the stresses at the front is investigated in detail. 
The corresponding acoustic problem has been examined in Cl-41 , where 

the solution in elementary functions was first obtained in [23 . Only the sol- 

ution for the plane wave diffraction problem [5] is known for a wedge in the 


